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4. Prediction Results

2. DIII-D Pedestal Database
● Two years of data from DIII-D tokamak in San Diego totaling 1092 shots with 

43980 time slices (TMS)
● Automated database creation and data fetching with custom OMFIT module [3]
● Fits to Thomson scattering data used to obtain pedestal parameters [2], and EFIT 

used to calculate machine parameters [4]
● Included input parameters: 

● Basic plasma: Plasma current, toroidal magnetic field, edge safety factor and 
normalized plasma pressure

● Shaping: a, r, triangularity, elongation, wall clearance, separatrix distance
● Heating: NBI heating power, beam fueling, ECH heating power
● Applied gas puffs 

● Output parameters:
● ne,ped, ne,sep, te,ped, te,wid, ne,wid

● Graphs show predictions of the neural network on the 
testing dataset

● Good prediction of ne,ped, ne,sep and te,ped
● This suggests that pedestal features correlated 

with basic machine parameters
● However, machine learning cannot distinguish 

correlation from causation
● te,wid, and ne,wid show correlation but have significantly 

worse predictions on outliers
● Unbalanced datasets with little variation

● Only < 10% of ne,wid is greater than 0.08
● Large uncertainty in the measurement of both 

values
● Mean Squared Error (MSE) of jth output on n samples

● Neural network performs better than shallow learning 
methods for each parameter on testing dataset

5. Summary 

6. Outlook web version

● New neural network model based on multitask architecture shows significant 
accuracy on pedestal features despite not using pedestal information
● Better performance compared to shallow machine learning models

● Demonstrated relationship between external parameters and ne,ped

● Predictions of the pedestal on future tokamak experiments
● Extend the database to more machines
● Which parameters correlate with the pedestal (especially 

ne,ped) and how are they correlated?
● Further analysis using neural networks

Model ne,ped ne,sep te,ped te,wid ne_wid
Linear Regression 0.0064 0.0054 0.0039 0.0029 0.0119
Random Forest 0.0041 0.0043 0.0027 0.0026 0.0108
AdaBoost 0.0073 0.0073 0.0040 0.0048 0.0174
Neural Network 0.0034 0.0042 0.0016 0.0023 0.0095

4. Neural Network Model
● Function at each node:

● ReLu: activation function 
● w: matrix of learned weights
● X: input parameter matrix
● b: learned bias
● Node weights originally set with Xavier 

initialization to reduce training time [5]
● Training using Adam optimizer with 

exponential decay on loss function [6]:

● yi: vector of measured outputs of the ith
sample

● yi: vector of calculated outputs of the 
iith sample

● Adam optimizer prevents staying in 
local minimums

● Exponential decay reduces training 
time and increases accuracy

● 15 epochs during training
● Epoch: the number of times the 

algorithm sees the entire training 
dataset

● Multitask neural network with 
output back-feeding:
● output parameters as input for other 

outputs
● Inspired by strong correlations 

between pedestal features
● Multiple architectures and 

hyperparameters tested, and the final 
network with the best final result on 
the validation dataset chosen

Neural Network Architecture

The MSE of Normalized Outputs of Different Machine Learning Models

● Database Split for Neural 
Network Evaluation:
● Training dataset: 892 

shots with 35154 TMS
● Validation dataset: 100 

shots with 4413 TMS
● Testing dataset: 100 

shots with 4413 TMS

3. Preprocessing and Correlation with ne,ped
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● Removed outliers and noise from 
parameters and TMS samples
● Parameters and outputs normalized 
● Parameter correlation with ne,ped: 
Mutual information (MI) measures 
dependency between parameters and ne,ped

● H(x): Entropy

● In tokamak reactors, the pedestal is the steep pressure 
drop at the plasma edge in high confinement mode (H-
mode)
● Over 30x increase in pressure across a 0.4-5 cm 

layer 
● Importance of the pedestal:

● Fusion power in the tokamak is strongly dependent 
on the pedestal top pressure

● Edge localized modes (ELMs), expelling particles 
and heat from the confined plasma, originate from 
the pedestal layer 
● ELMs leads to machine wall deterioration

● Understanding and predicting pedestal behavior 
enables pedestal and fusion performance optimization

● Previous works use some pedestal features as inputs 
for other pedestal features
● Alongside global plasma parameters such as !N, 

EPED-NN[1] uses pedestal top electron density 
(ne,ped) and effective charge (Zeff,ped) for pressure and 
width

● Goal of presented work: Predict pedestal features 
based on operationally accessible 'machine' parameters

1. Introduction and Motivation
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